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Tiltrotor are quite challenging machine to design since
they must be able to combine both helicopter and fixed
wing aircraft characteristics. Several difficulties arise in
the design phase:
• Very different flight conditions: Hover, Conversion,

Cruise.

• Low aspect ratio wings
• Strong aerodynamic interaction between different

parts (Rotors/Wing/Tail): Highly Unsteady and 3D
aerodynamics

• The aeroelastic interaction between the rotor and
wing may lead to instabilities: Whirl Flutter

• Rotor–Wing interaction must be taken into account
also when flight mechanics maneuvers are
considered.
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Coupling Multibody–Mid Fidelity Aerodynamic (VPM)

Multibody
• Non–linear and exact kinematics
• Non–linear structural dynamics
• Capability to simulate complex

models

Mid fidelity Aerodynamic (VPM)
• Ease to assemble complex

aircraft models
• Simulation of the entire aircraft

with reasonable computational
resources

• Interaction between the
aerodynamic component is well
captured

Introduction and motivation Approach 3
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• MBDyna features the integrated multidisciplinary simulation of
multibody, multi–physics systems.

• Large amount of elements are available:
I Nonlinear mechanics of rigid and flexible bodies (geometrically

exact & composite-ready beam and shell finite elements)
I Component mode synthesis elements (CMS)
I Electric and hydraulic networks
I Active control
I Aerodynamics is based on the simple 2D strip theory model

• The formulation consists in writing Newton–Euler equations of
motion:

M(x, t)ẋ = p

ṗ = φT/xλ+ f i(ẋ,x, t) + fe(ẋ,x, t)

φ(x) = 0

• MBDyn can be easily coupled to external solvers for co-simulation
of multi–physics problems.

• MBDyn is being actively developed and used in the aerospace,
wind energy, automotive, mechatronic, biomechanical fields.

ahttps://www.mbdyn.org/

Multibody Code: MBDyn 4
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• DUST a is a novel flexible solution to solve aerodynamics
problems.

• DUST is meant to deliver affordable, reliable solution of
aerodynamics problems on complex configurations.

• Core features:
I Flexible Geometry and Movement
I Import custom surface meshes or build them parametrically
I Multi fidelity levels models/elements: from 1D lifting line to 3D

objects.
• Mathematical formulation of the problem relies on Helmoholtz’s

decomposition of the velocity field: u = uφ + uψ.
• The rotational velocity uψ allows to describe the wake evolution

by a Lagrangian grid–free approach→ no volume mesh needed

ωh(r, t) =

Np∑
p=1

αp(t)ζ (r− rp(t);Rp)

ahttps://www.dust-project.org/

Aerodynamic Code: DUST 5
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Qq

Pe

Pp

• Radial Basis Function (RBF) Interpolation

φp =
∑
q

wpq φq

‖(Pp −Qq)‖2 := rTpqW rpq

• Kinematic variables

(Pp −O)g =
∑
Q∈IP

wpq

{
(Qq −O)g +Rr→g

Q (Pp −Qq)
}

• Forces and moments

fQ =
∑
e∈JQ

weq fe

mQ =
∑
e∈JQ

weq {me + (Pe −Qq)× fe}

Coupling Description 6

Alessandro Cocco, A. Savino, A. Zanotti, A. Zanoni, P. Masarati and V. Muscarello (alessandro.cocco@polimi.it)



Qq

Pe

Pp

• Radial Basis Function (RBF) Interpolation

φp =
∑
q

wpq φq

‖(Pp −Qq)‖2 := rTpqW rpq

• Kinematic variables

(Pp −O)g =
∑
Q∈IP

wpq

{
(Qq −O)g +Rr→g

Q (Pp −Qq)
}

• Forces and moments

fQ =
∑
e∈JQ

weq fe

mQ =
∑
e∈JQ

weq {me + (Pe −Qq)× fe}

Coupling Description 6

Alessandro Cocco, A. Savino, A. Zanotti, A. Zanoni, P. Masarati and V. Muscarello (alessandro.cocco@polimi.it)



Qq

Pe

Pp

• Radial Basis Function (RBF) Interpolation

φp =
∑
q

wpq φq

‖(Pp −Qq)‖2 := rTpqW rpq

• Kinematic variables

(Pp −O)g =
∑
Q∈IP

wpq

{
(Qq −O)g +Rr→g

Q (Pp −Qq)
}

• Forces and moments

fQ =
∑
e∈JQ

weq fe

mQ =
∑
e∈JQ

weq {me + (Pe −Qq)× fe}

Coupling Description 6

Alessandro Cocco, A. Savino, A. Zanotti, A. Zanoni, P. Masarati and V. Muscarello (alessandro.cocco@polimi.it)



Start

preCICE XML

DUST initialisation

MBDyn initialisation

Initialize
communication

Starting structural
dynamics computation

Iterative loop

Save Time Step

t < tend

yes

Send kinematic
variables to
aerodynamic
mesh nodes

Update aerodynamic loads
DUST

Update structure dynamics
MBDyn

Save iteration

no

preCICE
convergence yes

Stopno
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Goland 1 Hz NASTRAN Hz MBDyn Hz
1st Bending 7.66 7.66 7.66
1st Torsion 15.24 15.24 15.21
2nd Bending 38.80 38.59 38.54
2nd Torsion 55.33 54.84 54.79

• Analysis Procedure

1 Structural model: 4 non–linear finite volume MBDyn beams
2 Structural mesh convergence → mode shapes
3 Two types of aerodynamic elements were tested:

Vortex Lattice (vl): flat plate
3D panels: maintain profile shape and thickness

4 Symmetric NACA0012 profile
5 Perturbation of the AoA 0.05 deg to excite the system
6 Frequency and damping are estimated using matrix pencil

evaluating the time response of the wing tip displacement
7 Sweep in wind speed to obtain the V-g diagram

Wing properties
Chord, c 1.8288 m Mass per unit length 35.71 kgm−1

Half span 6.096 m Moment of inertia 8.64 kgm−1

Elastic axis 0.33 · c Torsional stiffness 0.99×106 Nm2

Center of gravity 0.43 · c Bending stiffness 9.77×106 Nm2

Flight conditions
Air density 1.020 kgm−3 Perturbation of AoA 0.05 deg

Validation and Application Goland’s Wing 8
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Author Model Vf ms−1 ff Hz
Goland and Luke Analytical 137.2 11.25
Patil et al. Intrinsic beam + strip theory 135.6 11.17
Wang et al. ZAERO 174.3 -
Wang et al. Intrinsic beam + UVLM 163.8 -
SHARP et al. Displacement beam + UVLM 165 10.98
Present Work DUST (vl)-MBDyn 168.2 10.84
Present Work DUST(panel)-MBDyn 171.5 11.06
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Rotor Multibody Model
• 3 Rigid blades
• Gimballed rotor→ rotation in

the hub plane are allowed
Rotor Aerodynamic Model
• 6 NACA 64-XXX series airfoil

profiles for each blade
• Lifting Line elements:

aerodynamic coefficients are
provided from .c81 tables

• Mesh convergence→
Thrust/Torque

Rotor data
Blade 3
Solidity 0.0891
Radius 3.81 m
Precone β 2.5 deg
Chord 0.3556 m
Twist 45 deg
Nominal speed 589 RPM

Fixed Wing Multibody Model
• Each component is
associated to a rigid body

• 1 DOF→ roll rotation
Fixed Wing Aerodynamic Model
• Lifting surfaces modelled

using 3D panels
• Chord–wise deformation of

the aerodynamic mesh to
simulate the control surfaces

• Bluff bodies modelled using
external CGNS mesh

Wing data
Aperture 4.90 m
Chord 1.601 m
Contr. Surf. 2
Dihedral 2.5 deg
Sweep -6.5 deg
Profile NACA64A223
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Conclusions
• A new aeroelastic solution has been proposed by joining the multibody solver MBDyn and the mid-fidelity
aerodynamic tool DUST through the partitioned multi–physics coupling library preCICE .

• Aeroelastic validation has been conducted evaluating the Flutter stability boundary of Goland’s wing
• The roll maneuver of a tiltrotor configuration has been considered evaluating the effect of the rotor’s presence

Developments

• Evaluate the reciprocal interaction between parts, for example tail shape ect . . .
• Simulate more realistic condition by allowing all 6 rigid DOF to the aircraft
• Evaluate the effect of the elasticity of the rotor and wing
• Perform whirl–flutter stability analysis
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Thank you for your kind attention
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