

Politecnico di Milano Department of Aerospace Science and Technology

COUPLED MULTIBODY-MID FIDELITY AERODYNAMIC SOLVER FOR TILTROTOR AEROELASTIC SIMULATION

Alessandro Cocco, A. Savino, A. Zanotti, A. Zanoni, P. Masarati and V. Muscarello

Politecnico di Milano Department of Aerospace Science and Technology alessandro.cocco@polimi.it

Coupled 2021 IX International Conference on Coupled Problems in Science and Engineering

Session: Multi-Physics Simulations With the Coupling Library preCICE **Session Chair:** B. Uekermann **Date:** June 16, 2021

• Very different flight conditions: Hover, Conversion, Cruise.

Image taken from https://cnn.it/3xgPLvp

- Very different flight conditions: Hover, Conversion, Cruise.
- Low aspect ratio wings

Image taken from https://cnn.it/3xgPLvp

- Very different flight conditions: Hover, Conversion, Cruise.
- Low aspect ratio wings
- Strong aerodynamic interaction between different parts (Rotors/Wing/Tail): Highly Unsteady and 3D aerodynamics

Image taken from https://cnn.it/3xgPLvp

- Very different flight conditions: Hover, Conversion, Cruise.
- Low aspect ratio wings
- Strong aerodynamic interaction between different parts (Rotors/Wing/Tail): Highly Unsteady and 3D aerodynamics
- The aeroelastic interaction between the rotor and wing may lead to instabilities: Whirl Flutter

Image taken from https://cnn.it/3xgPLvp

- Very different flight conditions: Hover, Conversion, Cruise.
- Low aspect ratio wings
- Strong aerodynamic interaction between different parts (Rotors/Wing/Tail): Highly Unsteady and 3D aerodynamics
- The aeroelastic interaction between the rotor and wing may lead to instabilities: Whirl Flutter
- Rotor–Wing interaction must be taken into account also when flight mechanics maneuvers are considered.

Image taken from https://cnn.it/3xgPLvp

Coupling Multibody–Mid Fidelity Aerodynamic (VPM)

Interaction between the

aerodynamic component is well

۲

captured

 MBDyn^a features the integrated multidisciplinary simulation of multibody, multi–physics systems.

- MBDyn^a features the integrated multidisciplinary simulation of multibody, multi–physics systems.
- Large amount of elements are available:
 - Nonlinear mechanics of rigid and flexible bodies (geometrically exact & composite-ready beam and shell finite elements)
 - Component mode synthesis elements (CMS)
 - Electric and hydraulic networks
 - Active control

- MBDyn^a features the integrated multidisciplinary simulation of multibody, multi–physics systems.
- Large amount of elements are available:
 - Nonlinear mechanics of rigid and flexible bodies (geometrically exact & composite-ready beam and shell finite elements)
 - Component mode synthesis elements (CMS)
 - Electric and hydraulic networks
 - Active control
 - Aerodynamics is based on the simple 2D strip theory model

- MBDyn^a features the integrated multidisciplinary simulation of multibody, multi–physics systems.
- Large amount of elements are available:
 - Nonlinear mechanics of rigid and flexible bodies (geometrically exact & composite-ready beam and shell finite elements)
 - Component mode synthesis elements (CMS)
 - Electric and hydraulic networks
 - Active control
 - Aerodynamics is based on the simple 2D strip theory model
- The formulation consists in writing Newton–Euler equations of motion:

$$\begin{split} \mathbf{M}(\mathbf{x},\mathbf{t})\dot{\mathbf{x}} &= \mathbf{p} \\ \dot{\mathbf{p}} &= \boldsymbol{\phi}_{/\mathbf{x}}^T \boldsymbol{\lambda} + \mathbf{f}_i(\dot{\mathbf{x}},\mathbf{x},t) + \mathbf{f}_e(\dot{\mathbf{x}},\mathbf{x},t) \\ \boldsymbol{\phi}(\mathbf{x}) &= \mathbf{0} \end{split}$$

- MBDyn^a features the integrated multidisciplinary simulation of multibody, multi–physics systems.
- Large amount of elements are available:
 - Nonlinear mechanics of rigid and flexible bodies (geometrically exact & composite-ready beam and shell finite elements)
 - Component mode synthesis elements (CMS)
 - Electric and hydraulic networks
 - Active control
 - Aerodynamics is based on the simple 2D strip theory model
- The formulation consists in writing Newton–Euler equations of motion:

$$\begin{split} \mathbf{M}(\mathbf{x},\mathbf{t})\dot{\mathbf{x}} &= \mathbf{p} \\ \dot{\mathbf{p}} &= \boldsymbol{\phi}_{/\mathbf{x}}^T \boldsymbol{\lambda} + \mathbf{f}_i(\dot{\mathbf{x}},\mathbf{x},t) + \mathbf{f}_e(\dot{\mathbf{x}},\mathbf{x},t) \\ \boldsymbol{\phi}(\mathbf{x}) &= \mathbf{0} \end{split}$$

• MBDyn can be easily coupled to external solvers for co-simulation of multi–physics problems.

- MBDyn^a features the integrated multidisciplinary simulation of multibody, multi–physics systems.
- Large amount of elements are available:
 - Nonlinear mechanics of rigid and flexible bodies (geometrically exact & composite-ready beam and shell finite elements)
 - Component mode synthesis elements (CMS)
 - Electric and hydraulic networks
 - Active control

Ν

- Aerodynamics is based on the simple 2D strip theory model
- The formulation consists in writing Newton–Euler equations of motion:

$$\begin{split} \mathbf{\hat{h}}(\mathbf{x},\mathbf{t})\dot{\mathbf{x}} &= \mathbf{p} \\ \dot{\mathbf{p}} &= \boldsymbol{\phi}_{/\mathbf{x}}^T \boldsymbol{\lambda} + \mathbf{f}_i(\dot{\mathbf{x}},\mathbf{x},t) + \mathbf{f}_e(\dot{\mathbf{x}},\mathbf{x},t) \\ \boldsymbol{\phi}(\mathbf{x}) &= \mathbf{0} \end{split}$$

- MBDyn can be easily coupled to external solvers for co-simulation of multi–physics problems.
- MBDyn is being actively developed and used in the aerospace, wind energy, automotive, mechatronic, biomechanical fields.

^ahttps://www.mbdyn.org/

• DUST ^{*a*} is a novel flexible solution to solve aerodynamics problems.

problems.

- DUST ^a is a novel flexible solution to solve aerodynamics problems.
- DUST is meant to deliver affordable, reliable solution of aerodynamics problems on complex configurations.
- Core features:
 - Flexible Geometry and Movement
 - Import custom surface meshes or build them parametrically
 - Multi fidelity levels models/elements: from 1D lifting line to 3D objects.

- DUST ^a is a novel flexible solution to solve aerodynamics problems.
- DUST is meant to deliver affordable, reliable solution of aerodynamics problems on complex configurations.
- Core features:
 - Flexible Geometry and Movement
 - Import custom surface meshes or build them parametrically
 - Multi fidelity levels models/elements: from 1D lifting line to 3D objects.
- Mathematical formulation of the problem relies on Helmoholtz's decomposition of the velocity field: $\mathbf{u} = \mathbf{u}_{\phi} + \mathbf{u}_{\psi}$.

- DUST ^a is a novel flexible solution to solve aerodynamics problems.
- DUST is meant to deliver affordable, reliable solution of aerodynamics problems on complex configurations.
- Core features:
 - Flexible Geometry and Movement
 - Import custom surface meshes or build them parametrically
 - Multi fidelity levels models/elements: from 1D lifting line to 3D objects.
- Mathematical formulation of the problem relies on Helmoholtz's decomposition of the velocity field: $\mathbf{u} = \mathbf{u}_{\phi} + \mathbf{u}_{\psi}$.
- The rotational velocity ${\bf u}_\psi$ allows to describe the wake evolution by a Lagrangian grid–free approach \to no volume mesh needed

$$\boldsymbol{\omega}^{h}(\mathbf{r},t) = \sum_{p=1}^{N_{p}} \boldsymbol{\alpha}_{p}(t) \zeta\left(\mathbf{r} - \mathbf{r}_{p}(t); R_{p}\right)$$

^ahttps://www.dust-project.org/

5

• Radial Basis Function (RBF) Interpolation

$$egin{aligned} \phi_p &= \sum_q w_{pq} \, \phi_q \ &\|(P_p - Q_q)\|^2 := oldsymbol{r}_{pq}^T \, \mathbf{W} \, oldsymbol{r}_{pq} \end{aligned}$$

• Radial Basis Function (RBF) Interpolation

$$\begin{split} \phi_p &= \sum_q w_{pq} \, \phi_q \\ \| (P_p - Q_q) \|^2 &:= \boldsymbol{r}_{pq}^T \, \mathbf{W} \, \boldsymbol{r}_{pq} \end{split}$$

• Kinematic variables

$$(P_p - O)^g = \sum_{Q \in I_P} w_{pq} \left\{ (Q_q - O)^g + \mathbf{R}_Q^{r \to g} (P_p - Q_q) \right\}$$

Radial Basis Function (RBF) Interpolation

$$egin{aligned} \phi_p &= \sum_q w_{pq} \, \phi_q \ &\|(P_p - Q_q)\|^2 := oldsymbol{r}_{pq}^T \, \mathbf{W} \, oldsymbol{r}_{pq} \end{aligned}$$

Kinematic variables

Forces and moments

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Start

Coupling Description

Air density	$1.020 \ \text{kg} \ \text{m}^{-3}$	Perturbation of AoA	0.05 deg
Flight conditions			
Center of gravity	0.43 · c	Bending stiffness	$9.77 \times 10^{6} \ N \ m^{2}$
Elastic axis	0.33 · c	Torsional stiffness	$0.99 \times 10^{6} \ { m N \ m^{2}}$
Half span	6.096 m	Moment of inertia	$8.64~\mathrm{kg}\mathrm{m}^{-1}$
Chord, c	1.8288 m	Mass per unit length	$35.71~{ m kg}{ m m}^{-1}$
Wing properties			

Analysis Procedure

1 Structural model: 4 non–linear finite volume MBDyn beams

Air density	1.020 kg m^{-3}	Perturbation of AoA	0.05 deg
Flight conditions			
Center of gravity	0.43 · c	Bending stiffness	$9.77 \times 10^{6} \text{ N m}^{2}$
Elastic axis	0.33 · c	Torsional stiffness	$0.99{ imes}10^{6}~{ m N}~{ m m}^{2}$
Half span	6.096 m	Moment of inertia	$8.64~{ m kg}{ m m}^{-1}$
Chord, c	1.8288 m	Mass per unit length	$35.71 \ { m kg m^{-1}}$
Wing properties			

• /	Anal	vsis	Proce	dure
		,		

- 1 Structural model: 4 non-linear finite volume MBDyn beams
- 2 Structural mesh convergence \rightarrow mode shapes

	Goland ¹ Hz	NASTRAN Hz	MBDyn Hz
1 st Bending	7.66	7.66	7.66
1 st Torsion	15.24	15.24	15.21
2^{nd} Bending	38.80	38.59	38.54
2^{nd} Torsion	55.33	54.84	54.79

^aGoland, M (1945)

Wing properties			
Chord, c	1.8288 m	Mass per unit length	$35.71~{ m kg}{ m m}^{-1}$
Half span	6.096 m	Moment of inertia	$8.64~\mathrm{kg}\mathrm{m}^{-1}$
Elastic axis	0.33 · c	Torsional stiffness	$0.99{ imes}10^{6}~{ m N}~{ m m}^{2}$
Center of gravity	0.43 · c	Bending stiffness	$9.77{ imes}10^6$ N m ²
Flight conditions			
Air density	$1.020 \ \text{kg} \ \text{m}^{-3}$	Perturbation of AoA	0.05 deg

	Goland ¹ Hz	NASTRAN Hz	MBDyn Hz
1 st Bending	7.66	7.66	7.66
1 st Torsion	15.24	15.24	15.21
2^{nd} Bending	38.80	38.59	38.54
2^{nd} Torsion	55.33	54.84	54.79

^aGoland, M (1945)

- 1 Structural model: 4 non-linear finite volume MBDyn beams
- 2
- Structural mesh convergence \rightarrow mode shapes Two types of aerodynamic elements were tested: 3
 - Vortex Lattice (vl): flat plate
 - 3D panels: maintain profile shape and thickness

Wing properties			
Chord, c	1.8288 m	Mass per unit length	$35.71~{ m kg}{ m m}^{-1}$
Half span	6.096 m	Moment of inertia	$8.64~\mathrm{kg}\mathrm{m}^{-1}$
Elastic axis	0.33 · c	Torsional stiffness	$0.99{ imes}10^{6}~{ m N}~{ m m}^{2}$
Center of gravity	0.43 · c	Bending stiffness	$9.77{ imes}10^6~N~m^2$
Flight conditions			
Air density	$1.020 \ \text{kg} \ \text{m}^{-3}$	Perturbation of AoA	0.05 deg

	Goland ¹ Hz	NASTRAN Hz	MBDyn Hz
1 st Bending	7.66	7.66	7.66
1^{st} Torsion	15.24	15.24	15.21
2^{nd} Bending	38.80	38.59	38.54
2^{nd} Torsion	55.33	54.84	54.79

^aGoland, M (1945)

- 1 Structural model: 4 non-linear finite volume MBDyn beams
- 2
- Structural mesh convergence \rightarrow mode shapes Two types of aerodynamic elements were tested: 3
 - Vortex Lattice (vl): flat plate
 - 3D panels: maintain profile shape and thickness
- Symmetric NACA0012 profile 4

Wing properties			
Chord, c	1.8288 m	Mass per unit length	$35.71~{ m kg}{ m m}^{-1}$
Half span	6.096 m	Moment of inertia	$8.64 \ { m kg} { m m}^{-1}$
Elastic axis	0.33 · c	Torsional stiffness	$0.99{ imes}10^{6}~{ m N}~{ m m}^{2}$
Center of gravity	0.43 · c	Bending stiffness	$9.77 \times 10^{6} \ N \ m^{2}$
Flight conditions			
Air density	$1.020 \ \text{kg} \ \text{m}^{-3}$	Perturbation of AoA	0.05 deg

	Goland ¹ Hz	NASTRAN Hz	MBDyn Hz
1 st Bending	7.66	7.66	7.66
1^{st} Torsion	15.24	15.24	15.21
2^{nd} Bending	38.80	38.59	38.54
2^{nd} Torsion	55.33	54.84	54.79

^aGoland, M (1945)

- 1 Structural model: 4 non-linear finite volume MBDyn beams
- 2
- Structural mesh convergence \rightarrow mode shapes Two types of aerodynamic elements were tested: 3
 - Vortex Lattice (vl): flat plate
 - 3D panels: maintain profile shape and thickness
- Symmetric NACA0012 profile 4
- Perturbation of the AoA 0.05 deg to excite the system

Wing properties			
Chord, c	1.8288 m	Mass per unit length	$35.71 \ { m kg} { m m}^{-1}$
Half span	6.096 m	Moment of inertia	$8.64 \ { m kg} { m m}^{-1}$
Elastic axis	0.33 · c	Torsional stiffness	$0.99{ imes}10^{6}~{ m N~m^{2}}$
Center of gravity	0.43 · c	Bending stiffness	$9.77{ imes}10^6~N~m^2$
Flight conditions			
Air density	$1.020 \ \text{kg} \ \text{m}^{-3}$	Perturbation of AoA	0.05 deg

	Goland ¹ Hz	NASTRAN Hz	MBDyn Hz
1 st Bending	7.66	7.66	7.66
1^{st} Torsion	15.24	15.24	15.21
2^{nd} Bending	38.80	38.59	38.54
2^{nd} Torsion	55.33	54.84	54.79

^aGoland, M (1945)

- 1 Structural model: 4 non-linear finite volume MBDyn beams
- Structural mesh convergence \rightarrow mode shapes Two types of aerodynamic elements were tested: 2
- 3
 - Vortex Lattice (vl): flat plate
 - 3D panels: maintain profile shape and thickness
- Symmetric NACA0012 profile
- Perturbation of the AoA 0.05 deg to excite the system 5
- Frequency and damping are estimated using matrix pencil 6 evaluating the time response of the wing tip displacement

Wing properties			
Chord, c	1.8288 m	Mass per unit length	$35.71 \ { m kg} { m m}^{-1}$
Half span	6.096 m	Moment of inertia	8.64 kg m^{-1}
Elastic axis	0.33 · c	Torsional stiffness	0.99×10^{6} N m ²
Center of gravity	0.43 · c	Bending stiffness	$9.77{ imes}10^6~N~m^2$
Flight conditions			
Air density	$1.020 \ kg \ m^{-3}$	Perturbation of AoA	0.05 deg

	Goland ¹ Hz	NASTRAN Hz	MBDyn Hz
1 st Bending	7.66	7.66	7.66
1^{st} Torsion	15.24	15.24	15.21
2^{nd} Bending	38.80	38.59	38.54
2^{nd} Torsion	55.33	54.84	54.79

^aGoland, M (1945)

- Structural model: 4 non-linear finite volume MBDyn beams
- 2 Structural mesh convergence \rightarrow mode shapes
- 3 Two types of aerodynamic elements were tested:
 - Vortex Lattice (vl): flat plate
 - 3D panels: maintain profile shape and thickness
- 4 Symmetric NACA0012 profile
- 5 Perturbation of the AoA 0.05 deg to excite the system
- Frequency and damping are estimated using matrix pencil evaluating the time response of the wing tip displacement
- 7 Sweep in wind speed to obtain the V-g diagram

Wing properties			
Chord, c	1.8288 m	Mass per unit length	$35.71~{ m kg}{ m m}^{-1}$
Half span	6.096 m	Moment of inertia	$8.64~{ m kg}{ m m}^{-1}$
Elastic axis	0.33 · c	Torsional stiffness	$0.99{ imes}10^{6}~{ m N}~{ m m}^{2}$
Center of gravity	0.43 · c	Bending stiffness	$9.77 \times 10^{6} \ N \ m^{2}$
Flight conditions			
Air density	$1.020 \ \text{kg} \ \text{m}^{-3}$	Perturbation of AoA	0.05 deg

	<i>Goland</i> ² Hz	NASTRAN Hz	MBDyn Hz
1 st Bending	7.66	7.66	7.66
1^{st} Torsion	15.24	15.24	15.21
2^{nd} Bending	38.80	38.59	38.54
2^{nd} Torsion	55.33	54.84	54.79

^aGoland, M (1945)

Author	Model	$V_f~{ m ms^{-1}}$	f_f Hz
Goland and Luke	Analytical	137.2	11.25
Patil et al.	Intrinsic beam + strip theory	135.6	11.17
Wang et al.	ZAERO	174.3	-
Wang et al.	Intrinsic beam + UVLM	163.8	-
SHARP et al.	Displacement beam + UVLM	165	10.98
Present Work	DUST (vI)-MBDyn	168.2	10.84
Present Work	DUST(panel)-MBDyn	171.5	11.06

Rotor Multibody Model

- 3 Rigid blades
- Gimballed rotor → rotation in the hub plane are allowed

Rotor Multibody Model

- 3 Rigid blades
- Gimballed rotor \rightarrow rotation in the hub plane are allowed

Rotor Aerodynamic Model

- 6 NACA 64-XXX series airfoil profiles for each blade
- Lifting Line elements: aerodynamic coefficients are provided from .c81 tables
- Mesh convergence \rightarrow Thrust/Torque

Rotor Multibody Model

- 3 Rigid blades
- Gimballed rotor \rightarrow rotation in the hub plane are allowed

Rotor Aerodynamic Model

- 6 NACA 64-XXX series airfoil profiles for each blade
- Lifting Line elements: aerodynamic coefficients are provided from .c81 tables
- Mesh convergence \rightarrow Thrust/Torque

Rotor data			
Blade	3		
Solidity	0.0891		
Radius	3.81	m	
Precone β	2.5	deg	
Chord	0.3556	m	
Twist	45	deg	
Nominal speed	589	RPM	

Rotor Multibody Model

- 3 Rigid blades
- Gimballed rotor \rightarrow rotation in the hub plane are allowed

Rotor Aerodynamic Model

- 6 NACA 64-XXX series airfoil profiles for each blade
- Lifting Line elements: aerodynamic coefficients are provided from .c81 tables
- Mesh convergence \rightarrow Thrust/Torque

Rotor data			
Blade	3		
Solidity	0.0891		
Radius	3.81	m	
Precone β	2.5	deg	
Chord	0.3556	m	
Twist	45	deg	
Nominal speed	589	RPM	
Nominal speed	589	RPM	

Fixed Wing Multibody Model

- Each component is associated to a rigid body
- 1 DOF \rightarrow roll rotation

Rotor Multibody Model

- 3 Rigid blades
- Gimballed rotor \rightarrow rotation in the hub plane are allowed

Rotor Aerodynamic Model

- 6 NACA 64-XXX series airfoil profiles for each blade
- Lifting Line elements: aerodynamic coefficients are provided from .c81 tables
- Mesh convergence \rightarrow Thrust/Torque

Rotor data			
Blade	3		
Solidity	0.0891		
Radius	3.81	m	
Precone β	2.5	deg	
Chord	0.3556	m	
Twist	45	deg	
Nominal speed	589	RPM	

Fixed Wing Multibody Model

- Each component is associated to a rigid body
- 1 DOF \rightarrow roll rotation

Fixed Wing Aerodynamic Model

- Lifting surfaces modelled using 3D panels
- Chord–wise deformation of the aerodynamic mesh to simulate the control surfaces
- Bluff bodies modelled using external CGNS mesh

Rotor Multibody Model

- 3 Rigid blades
- Gimballed rotor → rotation in the hub plane are allowed

Rotor Aerodynamic Model

- 6 NACA 64-XXX series airfoil profiles for each blade
- Lifting Line elements: aerodynamic coefficients are provided from .c81 tables
- Mesh convergence \rightarrow Thrust/Torque

Rotor data			
Blade	3		
Solidity	0.0891		
Radius	3.81	m	
Precone β	2.5	deg	
Chord	0.3556	m	
Twist	45	deg	
Nominal speed	589	RPM	

Fixed Wing Multibody Model

- Each component is associated to a rigid body
- 1 DOF \rightarrow roll rotation

Fixed Wing Aerodynamic Model

- Lifting surfaces modelled using 3D panels
- Chord–wise deformation of the aerodynamic mesh to simulate the control surfaces
- Bluff bodies modelled using external CGNS mesh

Wing data			
Aperture	4.90	m	
Chord	1.601	m	
Contr. Surf.	2		
Dihedral	2.5	deg	
Sweep	-6.5	deg	
Profile	NACA64A223	-	

Validation and Application XV-15 Roll Maneuver

Alessandro Cocco, A. Savino, A. Zanotti, A. Zanoni, P. Masarati and V. Muscarello (alessandro.cocco@polimi.it)

- A new aeroelastic solution has been proposed by joining the multibody solver MBDyn and the mid-fidelity aerodynamic tool DUST through the partitioned multi-physics coupling library preCICE.
- Aeroelastic validation has been conducted evaluating the Flutter stability boundary of Goland's wing
- The roll maneuver of a tiltrotor configuration has been considered evaluating the effect of the rotor's presence

- A new aeroelastic solution has been proposed by joining the multibody solver MBDyn and the mid-fidelity aerodynamic tool DUST through the partitioned multi-physics coupling library preCICE.
- Aeroelastic validation has been conducted evaluating the Flutter stability boundary of Goland's wing
- The roll maneuver of a tiltrotor configuration has been considered evaluating the effect of the rotor's presence

Developments

- Evaluate the reciprocal interaction between parts, for example tail shape ect ...
- Simulate more realistic condition by allowing all 6 rigid DOF to the aircraft
- Evaluate the effect of the elasticity of the rotor and wing
- Perform whirl–flutter stability analysis

13

Thank you for your kind attention

Alessandro Cocco, A. Savino, A. Zanotti, A. Zanoni, P. Masarati and V. Muscarello (alessandro.cocco@polimi.it)